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Abstract

The concept of “numerical speed of
sound™ is proposed in the construction of nu-
merical flux. It is shown that this variable
is responsible for the accurate resolution of
discontinuities, such as contacts and shocks.
Moreover, this concept can be readily ex-
tended to deal with low speed and multiphase
flows.  As a result. the numerical dissipa-
tion for low speed flows is scaled with the lo-
cal fluid speed. rather than the sound speed.
Hence. the accuracy is enhanced. the correct
solution recovered. and the convergence rate
mproved. We also emphasize the role of mass
flux and analyze the Dhehavior of this flux.
Study of mass flux is important because the
numerical diffusivity introduced in it can be
identified. In addition, it is the term common
to all conservation equations.

We show calculated results for a wide va-
riety of flows to validate the effectiveness of
using the numerical speed of sound concept
in constructing the numerical lux. We espe-
ciallv aim at achieving these two goals: (1)
improving accuracy and (2) gaining conver-
gence rates for all speed ranges. We find that
while the performance at high speed range is
maintained. the flux now has the capability
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of performing well even with the low speed
flows. Thanks to the new numerical speed of
sound. the convergence is even enhanced for
the flows outside of the low speed range. To
realize the usefulness of the proposed method
i engineering problems, we have also per-
formed calculations for complex 3D turbulent
flows and the results are in excellent agree-
ment with data.

1. Introduction

Numerical representation of inviscid
fluxes. namely the numerical flux function.
has been a subject of intensive effort by many
researchers during the last three decades.
Despite the enormous progress that has been
aclieved. further analvsis and deeper un-
derstanding into these numerical procedures
continue to draw interest and the findings
are being reported. In this paper we will in-
troduce the concept of the numerical speed
of sound. This concept turns out to be very
useful in designing a numerical flux in order
to meet certain criteria. Moreover. as will be
seen later. the numerical speed of sound lends
itsclf nicely to the formulation of numerical

schemes for all speeds. In other words. it
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plavs an important role in bridging the gap
between discretization schemes suitable for
incompressible flows and those suitable for
compressible flows.

For illustrative purposes. we shall begin
by considering the 1D flux for ideal gas. The
inviscid numerical flux function is written as
a sum of convective and pressure fluxes:

1 0 I 0
f=pul v +|p]|-= m | u +|p
H 0 H 0

It is noted that a common mass flux 1
appears in all equations. This is also true
for multidimensions. Since the mass flux is
common for all equations. its effects will thus
perpetuate in all variables. Hence, we suggest
that it is desirable to observe this fact at the
discrete level when devising a new scheme.
However. this fact is not entirely enforced in
several modern numerical schemes.

The AUSM-family schemes writes the in-
terface flux f ;. in a form mimicking the con-
tinuwm flux. Eq. (1). as

1 0
fl/z =My | u + | My (2)
H Ha+t 0

where the cell interface straddles the cells §
and j + 1 and the subscript j/j 4+ 1 denotes
that the vector (1. u. H) is evaluated with ei-
ther j or j + | values according to whether
1;11/2 15 positive or negative. The detailed de-
scription of 1711/2 and pyz, can be found in
[2-1].

2. Numerical Speed of Sound

To understand the idea of numerical
speed of sound. we first consider the cele-
brated Van Leer scheme [1]. which turns out

to be an important foundation for the devel-
opment of recent scliemes such as the AUSM-
family [2-4]. The mass flux of the Van Leer-
tvpe scheme is,

1;11/2: p‘,-a‘,v;\/tad;,)(;\]_,‘)+/)J-+1(1J-+1,\/l('%3)(.v‘\]‘,‘+1 ).

(3)
where ,M(jfl_a) are the split Mach number func-
tions defined by the 4th-degree (or second de-
gree in [1]) polynomials in the subsonic range:

MG, i[> 1
MG (AN F 163MF, (M),

otherwise,

.\/t(i,,_j,(;\f) =

(4)
where |
MGy = SO £ [M]). (5)
aud l
MGy = =717 (6)

Other forms are possible. but are not es-
sential in the discussion 1n this paper. The
scheme. Eq. (3). is known to produce a dis-
sipative result at a contact discontinuity. As
M = M, = M4 = 0. the mass flux does not
vanish.

"711/22 (pya, = pipra ) /4. (1)

[t 1s clear in the Van Leer scheme that two
variables. namely (p, «). need to be dealt with
if a mass flux is to vanish at M = 0. It is due
to this observation that a common speed of
sound ay, 1s introduced in the AUSM™* and
AUSMDY schemes. Let's modify Eq. (3) by
using @ ;.

My = arpalp; M (M) +pi 0 M (M0,

(8)
where the exact definition of a;,; 1s not im-
portant for the moment. but is certainly the
central topic of this paper. The limiting form
of 7;11/2 at M = 0 becomes.

’711/22 arpalp; — pj+) /1 # 0. (9)

§The coefficient in (19b) of JCP 129, 364-382 (1996), should be 1/4, not 1/2.
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Clearly the common speed of sound a, s, alone
is not enough to make the mass flux vanish
at M 0. and we need something extra.
A novel approach is proposed in the AUS-
MDYV scheme in which the split Mach number
functions ..“Vl[il) are added as an anti-diffusive

mechanism to fully cancel the excessive dis-
sipation. The interested reader is referred to
[4] for details.

In a different approach. AUSM™ defines
the mass flux as

. ady -
myp= .17/2[1”1/2(/"&/’_/“ =My 2l (pya —ﬂ./)]-
(10)
where
;“1]/2 - .\4:1”(“[,) ‘+‘ ,“\/1&“3)(;‘[‘}'_#1 ) ( 11 )

Since My, = 0 when M; = M, = 0. we

automatically get 1711/2: 0.
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Fig. 1 Stationary contact discontinuity by the
Van Leer and HLLE schemes

We that AUSMDYV and

AUSMT vield the desired result for a station-

remark hoth
ary contact discontinuity of any strength in
(p;- pis1) with an arbitrary a,y,. Figure | dis-
plays the solution at t > 0 for a stationarv
contact discontinuity. It is seen that the two

3

dissipative schemes. Van Leer and HLLE [5].
will destroy the discontinuity at the first time
step: Van Leer flux is seen to be more dissi-

pative than the HLLE flux.

While a stationary contact can be exactly
captured by the original AUSM scheme [2].
failure 1s encountered in the case of mov-
ing contact discontinuity. as shown in Fig.
2. This 1s also the reason for introduc-
ing a common speed of sound in the AUSM
scheme to achieve this and other improve-
ments, thus leading to the improved scheme
called AUSM™* [3]. Since the common speed
of sound is introduced as a means to vield an
accurate solution., which i1s only meaningful
in the numerical framework, heuce it is here-
after termed “numerical™ speed of sound.

2.0 ce  ALSM*
~- ALSM
1.6
. .
o &&E&Ww@ﬁ;wﬁnﬁm&ﬂ%&
0.8
0.4 -
0.0 1
-C.6 0.0 C.6
X
Fig. 2 Slowly moving coutact: comparison of

AUSA and AUSMT solutions.

As stated earlier. the contact (station-
ary and moving) discontinuities can be ac-
curately resolved with an arbitrary numerical
speed of sound aq,. This leaves us one degree
of freedom to determine a;,, so that another
imteresting proj)erty can be met. for example.
exact capturing of a stationaryv shock discon-
tinuity. This is accomplished in the AUSM-
family schemes by setting (detailed deriva-
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tion can be found in [3]).

a** fmax(a”. Jul).
(12)

where «” is the critical speed of sound. For

ayp = min(ap.ag), a=

ideal gas, we have

‘) -~ 1
2 200 - 0H .
a T (13)
i
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Fig. 3 Stationary shock discontinuity: a numer-
ical speed of sound is inserted in each of the

schemes included.

It is well known that a single shock can
be captured by the Roe scheme with the so-
called Roe averaged quantities. One of these
quantities is the averaged speed of sound.
which also is “numerical” in nature. The
idea of regarding the quantity ay;, as a free
variable turns out to be rather powerful in
the sense that the idea can be applied to
other schemes equally well. Firstly. the two
intermediate shock points by the Van Leer
scheme. including its original form [1] and
Hanel's modification [6] for the energy flux.
are now dramatically removed by simply in-
corporating this special numerical speed of
sound. Secondly, the HLLE schemes can be

4

made to satisfy the same property by using
the formula in Eq. (12) as well. Thirdly, in
addition to the familiar Roe averaged speed
of sound. we find that

a7y = max(ap,ar). (14)
instead of *min”™ used in Eq. (12). can also
vield an exact shock profile. The result in
Fig. 3 for the Roe scheme was obtained with
this formula. To our knowledge. these choices
of ay/, to achieve the exact property with the
HLLE and Roe schemes are previously un-
known in the literature.

Formulation for All Speeds

It is widely known that the standard form
of compressible equations, discretized with ei-
ther centered or upwind schemes. vields two
major effects on the solution as the flow speed
approaches zero: (1) a drastic slowdown or
level-off of convergence rate, (2) an inaccu-
even incorrect solution. An effective

dealing with the first point is by in-

rate or
way of
serting a premultiplying matrix to the time-
derivative term. thus it is usually called the
Many au-

T

thors. notably the schools of Merkle [7]. Van

local preconditioning technique.

Leer [3]. and Turkel [9]. have made signifi-
cant contributions in this area. For the sec-
ond point. the inaccuracies in the upwind
schemes are primarily due to the incorrect
scaling of the dissipation term as M — 0. In
fact. the dissipation turns out to be scaled
bv the sound speed at low Mach numbers.
thus vielding excessive numerical dissipation.
This immediately suggests that numerical
fluxes need to be modified to correct this sit-
uation.

The preconditioning is done to essentially
alter the eigenvalues of the hyperbolic sys-
tems so that the wave speeds become more

or less equalized. To see this. we define a

American Institute of Aeronautics and Astronautics



condition number & as the largest ratio of
eigenvalues,

lu| + a
K=
]

(15)
Clearly there is a large disparity of wave
speeds and as a result this has been identi-
fied as the source of slow (or no) convergence
as |u| — 0. We bring the attention that the
limiting taken in Eq. (15) is fundamentally
different from that by holding w fixed and
taking « — oc. The former is more general.
allowing low speed in a compressible medium
(where a 1s finite). and it is especially use-
ful for dealing with situations with disparate
speeds of sound in the flow.

Now if the numerical svstem is modified in
such a way that it has a corresponding speed
of sound. a. which behaves like |u| as it ap-
proaches to zero. then the condition number
will remain order of unity. That is.

| + a
K=

|l

— O(1).
(16)

Hence. condition number remains of order
unity at low speeds. The numerical dissipa-
tion based on this new speed of sound now
scales with the local speed |u]. instead of lo-
cal speed of sound «. To achieve this goal. the
trick is to manipulate the hyperbolic system
with the premultiplving matrix. Therefore.
the system is re-scaled. The numerical speed
of sound comes in handy for achieving the
purpose. Using the time-derivative premulti-
plying matrix proposed by Weiss and Smith
[10]. the time dependent governing (Euler or
Navier-Stokes) equations are cast in the fol-
lowing form:

ot

oFr

9G
el = 0. 17
da 0 ()

dy

where W is a vector of primitive variables,
(p.u.v. T)" and all other variables are stan-
dard. The preconditioning matrix takes the

while ¢ — 0. as [u] — 0.

— oc, as |u] — 0. and « held fixed.

D

form:
O+ -Rl—lT 0 0 —/%
(O + =) 0 »p —F ;
HO+ 3:)—1 pu pe p(C, =4
(18)
wlere
. Lo (
:Z;(W—l)- (19)

M? = min( L. max(M?* M?*)).

(20)

The cutoft parameter M., is introduced
to prevent a singularity at stagnation point.
It 1s a user-specified parameter. Unfortu-
nately it does have some effects on the solu-
tion in some situations. as will be displaved
later (in Fig. 4). The effect of M., gener-
allv is minor. but could be of significance in
some situations. A pressure difference term.
as suggested by Weiss [11]. can be added to
enhance robustness near a stagnation point.
The reference quantity A/? is also bounded
from above to unity as local Al exceeds one.
As a result. the eigenvalues of the flux Jaco-
bian of I with respect to W.ie. ' 19 F /W
are u. and

’ ! 1 2‘12
v ta = + A

V= M2)2012 4 AL
5 (vta EVE )
(21)
where M = wu/a 1s the unscaled Mach num-
ber. Several remarks can be made concerning
the eigenvalues of the preconditioned system.
Firstly, we have a hound for the coeflicient.

1
2 2 =

Secondly. the speed of sound is now re-scaled
by the scaling factor f(AM; ). Thus. a new
speed of sound can be defined.

a = f(M:M)a.

\/(1 —M22A2 4 N2
|+ 12

FM:M) =
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It is reminded that « in the above equation

be given in Eq. (12). The scaling factor is

M|
20,

also bounded.
. { i1 >> M4 >> A
T if 1 >> M2 >> A2
(25)
That is. the scaling factor f is bounded from
below by the larger of the local and cut-off
Mach numbers. Clearly, the variable a. intro-
duced as above. has been utilized for nothing

1>

but numerical purposes. Hence it fits in the
spirit of numerical speed of sound.

Now equipped with the newly defined nu-
mertcal speed of sound. we can readily incor-
porate 1t into the formulation of the AUSM-
In this paper. we will il-
lustrate the concept within the framework of
AUSN? only: similar procedures can be also
implemented in the other schemes. Let us
use the above scaling factor to define the nu-

family schemes.

merical speed of sound, a;,, = a(U;. U;4;).
at the interface 1/2. The mass flux of the
AUSM?* scheme in Eq.  (10) now can be

recast by inserting this numerical speed of

sound.
[ (} ;-
My = %[A\lx/z(ﬂﬁ/’./ntl)HAUl/zl(/’J—/{,H Ik

(26)

where the interface Mach number is given by,
My, = .\4(*;'3)( A+ ,\/l("{‘,;)(;\v]j.,_] ). (27)

and the arguments in .\/(‘i»,“{) have been sub-
stituted with

I o Lo
(14 MM+ (1= MHMn]. (28)

J_E

M

1 b g
Moo= S[UHMHM i+ (1= MM ] (29)
The tilde Mach numbers. (M. A;41). are
now defined with respect to the numerical
speed of sound a, i.e..

A=

a

(30)

6

This is the scaled Mach number, which will
revert to the local physical Mach number at
supersonic speeds. The step taken in Eqgs.
(28)-(29) is necessary to eliminate unphysi-
cal numerical diffusion present in the pressure
flux splitting and to enhance the robustness.
Test cases have shown that the definitions in
Eqs. (28)-(29) are not strictly necessary for
the mass flux definition; the simpler alterna-
tives 1\_1J- = MJ- and ;\YJH = JUJ'+1 can be
used as well. These result in a slightly more
dissipative scheme for low Mach number cal-
culations.

For identification purpose, we now call
this extended method, AUSM™ a, to high-
light the role of the numerical speed of sound
a.

In Fig. 4. we demonstrate that the nu-
merical dissipation is greatly reduced even if
the scaled numerical sound speed is included
in the Van Leer scheme for solving the con-
tact problem. The error will begin to reach
the end of the computation domain in [5
steps with the original scheme, but still re-
mains inside after 1830 steps (not shown in
the figure) with the scaled numerical sound
speed. Hence. confirming a much smaller dis-

sipation - as evident in Fig. 4.
16 Origina . 15 steps e Nomee a. M,=0.1
Y4~ * S Numse . 1S steps a4 M Numer o, W ,=0.0
van Leers Fiux * * Numer. a, ¥,,=0.00°
12. ‘9. van Leers Flux
60 s'ens
1028 56 oL - I - B -
< 8t « B
g 5
a- 4
2 ; 2: :
‘€8 ZTadewaoe
b o
3.0 4.0 5.0 6.0 7.0 30 <.0 s.C 6.0 7.0
X x

Fig. 4 Stationary contact discontinuity. showing
the eflectiveness of using the scaled numerical
speed of sound in the Van Leer Flux.

Another interesting result is also revealed
in Fig. 4. The plot on the right demonstrates
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the dissipative effect of the cutoffl Mach num-
ber M., on the spreading of the stationary
The smaller the M., the
re-

contact. 15 set.
sharper the contact discontinuity gets
sults being closer to the exact solution de-
noted by solid line. indicating that the nu-
merical dissipation increases with the value
of M.,.

To further improve the convergence in the
low speed range. it is found beneficial in Ed-
wards and Liou [12] that a pressure diffusion

term 771}, be included in the mass flux.
M= Bq. (26)+ m, . (31)

. . L . . .
We can write m, in the following general

form.
= B MAMO, — ). (32)
where
AM = [~MF%;.,;)(:‘71_/') - ML)
— M (M) + MG (M) (33)

and the function D in the denominator can
take several forms. Based on the mass flux
of the AUSMDY scheme, Edwards and Liou
[12] derived the pressure diffusion term for
low Mach numbers,

D= [l g B (34)

Pi fi+1

In this paper we suggest another formula,

D=

[;Uf([{,’ + i)+ pitr)
PiPi+1

—(p; = pie)py = piar)]. (39)

This is obtained by also starting with the
AUSMDY mass flux and by imposing a con-
dition that its weighting factors be bounded
(see Appendix A). Furthermore. the last term
can be omitted to guarantee that D be posi-
tive.

D= (AL2(p, 4 pie1) s+ pi0)] - (36)

PP+t

{

which looks similar to the first expression.

To see how the numerical speed of sound
derived for the preconditioned system affects
the discretization. it is useful to examine the
mass flux in the limit of an incompressible
flow. where p is constant and a;;; (but not
ai/2) approaches infinity. Using the defini-
tions in Eqs. (26)-(32) and taking the limit
M? tending to zero in Eqs. (28)-(29). we find
that

,/uf/z-i-ﬂ;z
T

1 ‘ ‘ .
XA,[I( M| = D) 4 3(MF = 1)%. (37)

[ ]
M= puyyy + (Pi = pis1)

where

(33)

and

(39)

The reference velocity 1, is defined analo-
gously with Eq. {20):

12 = max(|V]% 1 2).

(10)

This mass flux formula involves only
the velocity field. pressure, and a constant
density and is similar to that utilized in
incompressible-flow discretizations on non-
staggered grids. Note that the physical sound
speed completely disappears from the formu-
lation in the incompressible limit. Advec-
tive upwind influences are present in the mo-
mentum equations and the (decoupled) en-
ergy equation through the switching process
shown in Eq. (2).
diffusion term provides dissipation for the

but only the pressure-

continuity equation.
Moreover. the idea of using @ can he read-
ilv applied to solve multiphase flow problems
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in which both the density and Mach num-
bers can vary drastically with phase changes.
More interestingly. the flow can go superson-
ically even though the fluid speed is low. due
to a steep decrease in speed of sound. The
reader is referred to [13] in this conference.
In what follows we summarize the steps
involved for adding*the numerical speed of
sound in the AUSNM®T . These steps. although
motivated for low-Mach number flows. are
also valid for high Mach-number ones. The
modificatious detailed above also work for the
pressure flux splitting (at least for perfect
gases). serving to remove unphysical sources
of numerical dissipation in the momentum
equations.[12] Further modifications are nec-
essary for real fluid applications. and the
reader is again referred to [13] for details.

I. Use the numerical speed of sound a,/,
(23) to define M; and M4, appearing
in Eqgs. (28)-(29).

I

Replace the left- and right-state Mach
number definitions by MM; and M, ;.

3. Construct the mass flux as usual by us-
ing as input the (M, M 4,) defined in
the previous step.

L. If desired. add contribution from pres-
sure diffusion by using Eq. (32).

3. Complete evaluation of other fluxes.

This is all there is to it, involving a kind of
pre- and post-processing of the usual AUSM-
family schemes, steps 1-2 and 4 respectively.
[t is a matter of adding only a few more lines
to the original AUSM?* code. It is believed
that other low-diffusion hybrid schemes can
also be extended in a similar manner. We
shall denote the scheme with the pressure dif-
fusion term AUSM™* -ap.

We now make remarks on the precondi-
tioning matrix I'. We have used the Weiss-
Smith I' to arrive at the scaling function

8

f(M: M) in Eq. (24). Other precondition-
ers [8,9] can be used as well. The procedure
for extension will be precisely the same since
all one needs is the eigenvalues of the pre-
conditioned hvperbolic system. Thus. a new
numerical speed of sound @ can be expressed
in terms of the scaling function f(M: M.).
However, no significant effect on the solution
is anticipated because all these precondition-
ers yield more or less the same behavior in the
limits of M — 0 and 1. Unless at low speed
(say M, < 0.3). it was found in our calcula-
tions not necessary to include the precondi-
tioning matrix in solving the governing equa-
tions. In other words. the scaling function
can be incorporated alone. as in Egs. (26)-
(29), in the numerical lux and improvements
in accuracy and convergence can be realized.

3. Results and Discussion

In this section., we will present 2D and 3D
Navier-Stokes solutions for turbulent flows
over various geometries. The scheme pro-
posed in this paper was implemented in the
OVERFLOW code supplied by Buning et
al. [14]. The turbulence eddy viscosity in
all cases presented herein was calculated ac-
cording to the Spalart-Allmaras one equation
model [15]. All of the results presented be-
low were obtained using an implicit scheme.
The LHS operator was approximated with
the standard central difference scheme plus
appropriate artificial damping terms. (even
though the RHS residual operator was rep-
resented with an upwind scheme !). it was
then further factored and diagonalized in
each space dimension.

The flux in the RHS operator was con-
structed with a third-order accurate inter-
polation for the primitive variables. together
with limiter used by Koren [19]. The cut-
off Mach number in Eq. (20) is given by

M? = A2 /4. However. the OVERFLOW

CO
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code has a parameter controlling the use of
the preconditioning matrix I'. We kept the
default value to be 302 < | under which
condition I' was activated.

In this paper we will demonstrate the
effectiveness of using the numerical speed
of sound in calculating flows at all speeds.
specifically focusing on two issues: (1) con-
We will
show that the convergence rate is improved
for the entire flow speed regime and the cal-

vergence rate and (2) accuracy.

culated solutions are in excellent agreement
with data.

Shuttle External Tank

This i1s an axisymmetric Shuttle external
tank geometry with a sharp nose and blunt
base. downstream of which a significant sepa-
ration zone is created, see Fig. 8. One of the

grid lines conforms to the body and grows
outward and a plane consists of 88 x 60 grid
points. Shown also are the meshes clustered
around some key regions. one of which is in
the middle to resolve a tiny notch (not visi-
ble to the scale). The free stream Revnolds
number was fixed at 10,000. But a fully tur-
bulent flow from the nose was assumed in
order to pose a more stringent condition for
the assessment of convergence behavior. We
have tested conditions from low Mach, tran-
sonic, to supersonic flows. Several schemes
were considered. consisting of the standard
AUSM™ CAUSMT -a, and AUSM™T -ap. with
and without the Weiss-Smith preconditioner.
In all calculations for this problem. we made
200 steps for each of two coarser grids prior
to the finest grid. on which 3000 more steps
were continued unless noted otherwise.

Table 1: Summary of convergence behavior due to various schemes for the shuttle external

tank. Re.. = 10000.

l M ’ Scheme | No Precond. l Precond. ]

AUSM* v Diverg.
0.01 AUSM® -a No converg,. Vv
AUSM* -a + m,, | No converg. V4
AUSN* v 4
0.80 AUSM™ -a V4 v
AUSM* -a + i, v v
AUSM* v v
2.00 AUSM? -a v V4
AUSM* -a 4 m, v N

Table 1T summarizes the convergence be-
havior of the above combinations. WWe ob-
serve the following: (1) For low Mach num-
bers (approximately M, < 0.3). it was found
necessary to use the time-derivative precon-
ditioner I' so that the numerical dissipations

9

in both the implicit and explicit operators
are compatibly scaled. Otherwise. the cal-
culation either diverged or stagnated. (2)
For flows at transonic speeds or higher. the
time-derivative preconditioner, as given in
Eq. (138). serves no benefits whatsoever. even
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though the fluid speed is low in the vis-
cous and the base How regions. This is un-
derstandable because the preconditioner ef-
fects only the inviscid waves and the informa-
tion in the viscous-dominated regions is only
transmitted via diffusion processes which are
ably handled by the implicit operator. Vis-
cous and grid aspect effects can be included
in the construction of preconditioner, see for
example [16].

)

[ T |

MNP0 o
ON® O

.
TTXTIXZ
w

[N

Res

VIR e et et L

Fig. 5 Convergence history for the shuttle exter-
nal tank problem.

In Fig. 5. we display the convergence
listory for various MNach numbers using
AUSM?* | without using the preconditioner
[. The residuals for the low Mach-number
cases stall after a drop of four orders of mag-
nitude. These drops in many calculations. al-
though not especially adiirable, would have
been acceptable. However. a close examina-
tion of the solution reveals that it is com-
pletelv unacceptable. as shown in Fig. 6. It
appears that there is a false boundary (ex-
actly aligned with a grid line) at which infor-
mation is unable to pass. This phenomenon
1s quite tvpical in the low Mach-number cal-
culations using an unmodified compressible
code. also seen in [12]. Hence. a measure
of caution should be taken when reading the
residual history for the low Mach-number

solutions.

Ao e

Fig. 6 Pressure contours for the shuttle external
tank problem obtained at N=6400 time steps for
M. = 0.01, using the standard AUSM™* . The
Bottom picture shows a magnified view near the

nose.

O OO
O N - O

T T T T X
w

1w i non

N

Res

Fig. 7 Convergence history for the shuttle ex-
ternal tank problem obtained by the AUSM™ -a
scheme.

On the other hand. the convergence his-
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tories with the use of the numerical speed of

sound display improvement over those with-

out 1t. as shown in Fig. 7. As noted ecar-

lier in Table 1. it is necessary to invoke I' for

the M. = 0.0land 0.1 cases. The conver-
gence rates for these two calculations nearly
coincide with each other. indicating Mach-

number independence.

Fig. 8 Pressure contours for the shuttle external
tank problem obtained at N=1000 time steps for
M. = 0.01. using AUSM™ -a. The middle pic-
ture shows a magnified view near the nose and
the bottom one depicts the separated zone be-
hind the tank base.

In Fig. 8, we show the solution at N=1000

steps at which the residual has been dropped
to the level approximately equal to that
shown in Fig. 6 (N=6400). It is of inter-
est noticing that the solution now is well be-
haved and is every bit as good as the solu-
tion at N=3200. Also the blow-up view near
the surface reveals smooth profiles of pressure
contours. unlike the standard AUSM™* which
has been known to vield unwanted pressure
oscillations in viscous lavers along the trans-
verse grid lines when the mesh aspect ratio
is large and flow is essentially parallel to a
grid line.* The separation region in the bhase
of the tank is depicted by particle traces. in-
dicating its size extending about one radius
downstrean.

. e
. [ e
L

.
T Tz

Res

C 2600

Fig. 9 Convergence history for the shuttle exter-
nal tank problem obtained by the AUSM?* -ap
method.

Finally the effect of including the pres-
sure diffusion term on the solution was inves-
tigated and the results are given in Fig. 9.
Again. the preconditioner I' must he used for
the low Mach-number cases and their conver-
gence histories are essentiallv identical. be-
coming independent of Mach number as the
Mach number lowers. The pressure contours
are indistinguishable from those shown in
Fig. 8 and are thus not included.

“However, the pressure distribution along the wall is smooth.

11
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Fig. 10 Pressure contours at M. =
0.01.0.1.0.8.1.25. and 2.0 (from top to bottom)
for the shuttle external tank problem. showing
accordingly different flow features.

The solutions obtained by using the

12

AUSM® -a for several M., values are given
in Fig. They all ap-
pear physically correct and are numerically
well behaved. No discenible differences were
noticed between those by AUSMT -a and
AUSMTY -ap.

Comparing Figs. 5, T and 9, we see that
the convergence rate is improved in the tran-

10 for comparison.

sonic ranges by simply using the numerical
speed of sound alone. For low Mach num-
ber cases. M. = 0.01.0.1, another order of
reduction can be obtained by including the
pressure diffusion term. Also. the use of nu-
merical speed of sound vields the convergence
histories that are relatively insensitive to the
flow speeds. Thus, the validity of the present
method is confirmed and the goal of having
a convergence rate that is more or less inde-
pendent of the free-stream speed is achieved.

We now summarize major findings from
the study of this problem: (1) The numer-
ical speed of sound concept is an effective
means of extending AUSM-type discretiza-
tions to solve low Mach number flows in an
accurate and efficient manuner. (2) Since the
numerical speed of sound is reduced with the
flow speed. the numerical dissipation changes
accordingly. and a compatible implicit op-
erator (one that includes the precondition-
ing matrix) must be used. (3) For moderate
Mach numbers and bevond. it is not neces-
sary to use I'. (4) Incorporation of the nu-
merical speed of sound, as described in steps
(26)-(29). helps remove pressure oscillations
in the viscous lavers.

ONERA M6 Wing

The next problem is the ONERA M6 wing
with the free stream conditions M. = 0.34,
and Re.. = 18.2 x 10°, under various angles
of attack. The computation domain consists
of 269 x 35 x 67 grid points. For this case.
the preconditioning matrix I" was automati-
cally turned off in the code since the control-
ling factor 302 exceeds unity. However. the
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numerical speed of sound @ was active with
M., = M. /2. The pressure contours on the
wing surfaces are displaved in Fig. 11, show-
ing the well-known A-shock pattern, thus ap-
pearance of two shocks roughly in two thirds
of the wing span. The detailed comparison of
surface pressure distributions are shown for
two spanwise sections. Figs. 12 and 13 re-
spectively for 44% and 65%. for four angles
of attack. The computed results are in very
good agreement with the data [17]. especially
in capturing of the shock locations.

The convergence histories are presented
in Fig. 11 for two different angles of attack.
They show a continuing decrease by about
five orders of magnitude from the largest val-
ues. at nearly the same rates.

Wingbody

Turbulent flows over a wingbody config-
uration are calculated and their results are
now discussed. The geometry is shown in
Fig. 15. where the sting is included in the
calculation. The computation domain is grid-
ded using the chimera overset grid technique
and entire grid is composed of seven grids.
The flow conditions are: M., = 0.8,a0 = 2°,
and Re. = 0.167 x 10° Figure 16 depicts
the pressure coefficients at various spanwise
locations. The computed results are in excel-
lent agreement with the measured data [18].
Moreover. the pressure coefficients along the
body, shown in Fig. 17. exhibits a similar
level of excellent agreement with the data.
even in the wing root region where a sharp
variation is encountered.

Finally, Fig. I8 displays a well-behaved
convergence history. reducing the residual er-
ror by more than five (5) orders of magnitude
i 800 steps.

4. Concluding Remarks

In this paper we have introduced the no-
tion of “numerical speed of sound™, which
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turns out to be a very useful variable that can
be emploved to construct an upwind scheme
to satisfy certain properties, most notably
the exact capturing of contact and shock dis-
continuities for 1D problems. This numer-
ical speed of sound is explicitly utilized in
the construction of AUSM* and AUSMDV
schemes. However, the idea can be inserted
in the other upwind schemes. One example
is in the Roe flux splitting where an aver-
aged speed of sound. among several other av-
eraged variables. is automatically required for
the process. We have shown that other cele-
brated schemes, which in standard form ex-
hibit intermediate points. can now be made
to capture a shock exactly.

More importantly, the concept of numer-
ical speed of sound. being meaningful only in
the numerical sense. can be extended to effec-
tively deal with flows at low speeds. The crux
is that a scaling factor varving with speed (or
Mach number) is introduced. As a result. the
numerical dissipation is decreased with the
flow speed. Hence the convergence rate is en-
hanced, not only at low speeds. but also at
high speeds as well. Additionally. the solu-
tion accuracy is improved.

The effectiveness of implementing the nu-
merical speed of sound in the AUSM* scheme
has been demonstrated. Solutions of com-
plex turbulent flows were obtained for com-
plicated geometries. meshed with the over-
set grid technique, using the OVERFLOW
code. We have presented convergence his-
tories demonstrating significant improvement
over the previous scheme. The pressure dis-
tributions are in excellent agreement with
available data for the ONERA M6 wing and a
wingbody configuration. further proving the
reliability of the new scheme, AUSM™ - a.
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Appendix A

In this section we give a formal derivation
of the function D that appears in the pressure
diffusion term in mass flux. We begin with
the AUSMDYV flux written in terms of the
numerical speed of sound.

M= g {ﬂw"f(ﬁ)(f‘f_,) + i M (M)
+/JA,'..<.'+(,‘VI(*;“,)(JI_/') — ‘M?-l)(‘”J))
1w (M (M) = MG (M50 (1)
where

P

Py Pi+1 (
D’

)i = .
/,/‘l‘ D

8N

P
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These can be rewritten as

mw+=jw)§)r—Ap (3)

PHJW_::,D (2_p+Ap), (4)
together with

Yor=pitps. Ap=pia—p. (5

Noticing that D has the dimensiou of p/p.
Substituting these formulas into Eq. (1). we
denote the coefficient for Ap term by

Kﬁzngw (6)

where we have AM given in Eq. (33). As
M M1 — 00 we get

AM = (

b | —

+ 3). (7)
Hence, if D = O(1). then
]\’p:()(lll/z)~ as ll]/2<< 1 (8)

That 1s. the pressure diffusion term dimin-

ishes with the flow speed and it clearly is in-

sufficient to provide adequate contribution of

pressure to the mass flux at low speeds. This
can be remedied by properly rescaling &, as

— L A M. (9)

As a result. we should have defined «® in the
following way,
_Xp
_ Ap

What is left is to determine the expression of
D. First. we remark that the condition for
capturing a stationary contact discontinuity
requires
4 - :
piet = pryie (12)

Monotonicity constraints on the "+ and -
split Mach numbers in Eq. (1) implies condi-
tions on w# (see [4] for example),

2

0§uﬂw‘§l+L{ (13)

A more stringent condition fulfilling the
above inequalities may be

2

1 +14

0wt +u =w <
This gives the relation

D=AM?D=
wPip+1

MAp, 4 pis)p, + 01
—(p; = pi+1)p;

This completes the derivation of D.
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Fig. 11 Pressure contours on the ONERA M6 wing at « = 37, M. = 0.84,
showing the A-shock pattern near the wing tip.
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Fig. 12 Pressure distribution at the spanwise section. 44%. of the ONERA M6 wing for various angles

of attack, M. = 0.84. Re. = 18.2 x 10°.

16

American Institute of Aeronautics and Astronautics



- E e e -1.5 :

- Zxof l o "~ Exo- i
-0 --- CFB 1.0k 4 e ---
a= 03.04 deg bt ' ) a= 3.06 de?
O 5 4 ! “L)"“ S
(1_ N Wu‘\y a_os [ ‘
© RS © ey !
C.CY1 « e 0.0 3 e |
“ { S
c.5 0.5 ; |
' i
I |
C 1.0 -
0.0 0.4 C.8 0.0 0.4 0.8
X/C X/C
-7.5 —-1.57
o " Ixof e " Exor
-0 CEr -—- Cf2 10~ ° o -—- C7D
a= 4.08 deg 5 a= 5.06 deg
o8l *O.Sj’ !
[>% _ o a | .
© | TR © ‘ - T .
e.or . 7 < 0.0 - RS
P ;. 1 7‘
c.5 0.5 i
P
| i
C 1.0
0.0 0.4 C.8 3.0 0.4 c.8
X/C X/C

Fig. 13 Pressure distribution at the spanwise section. 65%. of the ONERA M6 wing for various angles
of attack. M. = 0.84. Re. = 18.2 x 108,

a = 0.04 ceg 1074 - A = 3.06 deg

A

1075 ¢

1078 \\\

Res
Res

10710 ¢ ‘ 16719
0 400 800 0 400 800

N N

Fig. 14 Convergence history for the ONERA M6 wing problem at two angles of attack. M. =
0.84. Re . = IR.2 x 10",

1y

American Institute of Aeronautics and Astronautics



Fig. 15 Geometry of the wingbody probleni.
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Fig. 16 Pressure distribution at various sections of the wing. My = 0.8.a = 2°. Re.. = 0.167 x 10°.
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